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The big picture
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Intersecting graphs

Assume given two graphs with vertex set V , say

G1 ≡ (V,E1) and G2 ≡ (V, E2)

The intersection of the two graphs G1 ≡ (V,E1) and G2 ≡ (V, E2)
is the graph (V, E) with

E := E1 ∩ E2

We write
G1 ∩ G2 := (V, E1 ∩ E2)
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Capturing multiples constraints

Adjacency expresses constraints/relationships which can be
physical, logical, sociological, etc.

E.g., for two constraints:

• Communication constraint and link quality (e.g., fading)

• Communication constraint and secure link (e.g., via shared key)

• Membership in two different social networks
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Random graphs

For vertex set V , let E(V ) denote the collection of all sets of
(undirected) edges on V . A random graph with vertex set V is
simply an E(V )-valued rv defined on some probability triple
(Ω,F , P), say E : Ω → E(V ).

We write
G ≡ (V, E)

Erdős-Rényi graphs, generalized random graphs, geometric
random graphs, random key graphs, small worlds, random
threshold graphs, multiplicative attribute graphs, growth models
(e.g., preferential attachment models, fitness-based models)
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Constructing (undirected) random graphs

Convenient to write
V ≡ {1, . . . , n}.

Random link assignments encoded through {0, 1}-valued rvs

{Lij , 1 ≤ i < j ≤ n}

with

Lij =


1 if (i, j) up

0 if (i, j) down
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Distinct nodes i, j = 1, . . . , n are adjacent if Lij = 1, and an
undirected link is assigned between nodes i and j.

Examples:

• Erdős-Renyi (Bernoulli) graphs

• Geometric random graphs – Disk models

• Random key graphs
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Intersecting random graphs

Assume given two random graphs with same vertex set V , say

G1 ≡ (V, E1) and G2 ≡ (V, E2)

The intersection of the two random graphs G1 ≡ (V, E1) and
G2 ≡ (V, E2) is the random graph (V, E) where

E := E1 ∩ E2

We write
G1 ∩ G2 = (V, E1 ∩ E2)
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Equivalently,

Lij = L1,ij · L2,ij , 1 ≤ i < j ≤ n

Throughout the component random graphs G1 and G2 are
assumed to be independent:

The collections {L1,ij , 1 ≤ i < j ≤ n} and {L2,ij , 1 ≤ i < j ≤ n}
are independent.
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A basic objective

Inheritance – Understand how the structural properties of the
random graph G1 ∩ G2 are shaped by those of the component
random graphs G1 and G2

Focus on graph connectivity and on the absence of isolated
nodes – Easier and hopefully asymptotically equivalent

After all
2

n(n−1)
2 possible graphs on V

and typical behavior explored asymptotically via

Zero-one Laws
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A basic source of difficulty

G1 ∩ G2 connected

implies
G1 and G2 both connected

But the converse is false!

V = {1, 2, 3} :

E1 : 1 ∼ 2 ∼ 3

E2 : 1 ∼ 3 ∼ 2

E1 ∩ E2 : 2 ∼ 3

Similar comment when considering the absence of isolated nodes
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Examples of random graphs
and their zero-one laws
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Erdős-Renyi (ER) graphs G(n; p)

Random link assignment encoded through i.i.d. {0, 1}-valued rvs

{Lij , 1 ≤ i < j ≤ n}

with
P [Lij = 1] = p

for some 0 < p < 1.

Also known as Bernoulli graphs
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Strong zero-one law for graph connectivity in ER graphs G(n; p)
(0 < p < 1) [Erdős and Renyi]: Whenever

pn ∼ c
log n

n

for some c > 0, we have

lim
n→∞

P [G(n; pn) is connected] =


0 if 0 < c < 1

1 if 1 < c

Same zero-one law for absence of isolated nodes

Critical scaling for graph connectivity:

p⋆
n :=

log n

n
, n = 1, 2, . . .
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We also have the weak zero-one law:

lim
n→∞

P [G(n; pn) is connected] =


0 if limn→∞

pn

p⋆
n

= 0

1 if limn→∞
pn

p⋆
n

= ∞

Simple consequence of strong zero-one law by the monotonicity of
the mapping

p → P [G(n; p) is connected]
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Geometric random graphs G(n; ρ)

Population of n nodes located at X1, . . . ,Xn in a bounded convex
region A ⊂ R2.

With ρ > 0, nodes i and j are adjacent if

∥Xi − Xj∥ ≤ ρ

so that
Lij = 1 [∥Xi − Xj∥ ≤ ρ]

Usually, i.i.d. node locations X1, . . . ,Xn which are uniformly
distributed on unit square or unit disk – Disk model
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Strong zero-one law for graph connectivity in geometric random
graphs G(n; ρ) (ρ > 0) [Penrose, Gupta and Kumar]: Whenever

πρ2
n ∼ c

log n

n

for some c > 0, we have

lim
n→∞

P [G(n; ρn) is connected] =


0 if 0 < c < 1

1 if 1 < c

Same zero-one law for absence of isolated nodes

Critical scaling for graph connectivity:

π (ρ⋆
n)2 =

log n

n
, n = 1, 2, . . .



NIST, ACMD Seminar Series, February 2014 18

A random key pre-distribution scheme

(Eschenauer and Gligor 2002)

For integers P and K with 1 ≤ K < P , let PK denote the
collection of all subsets of {1, . . . , P} with exactly K elements

For each node i = 1, . . . , n, with θ = (P, K), let Ki(θ) denote the
random set of K distinct keys assigned to node i

Under the EG scheme, the rvs K1(θ), . . . , Kn(θ) are assumed to be
i.i.d. rvs, each of which is uniformly distributed over PK with

P [Ki(θ) = S] =
(

P

K

)−1

, S ∈ PK , i = 1, . . . , n
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The random key graph K(n; θ)

Distinct nodes i, j = 1, . . . , n are said to be adjacent if they share
at least one key in their key rings, namely

Ki(θ) ∩ Kj(θ) ̸= ∅.

In other words,

Lij(θ) := 1 [Ki(θ) ∩ Kj(θ) ̸= ∅]

For distinct i, j = 1, . . . , n,

q(θ) = P [Ki(θ) ∩ Kj(θ) = ∅] =

(
P−K

K

)(
P
K

) .
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Strong zero-one law for graph connectivity in random key graphs
K(n; θ) (K < P ) [Di Pietro et al., Burbank and Gerke,
Rybarczyk, YM]: Whenever

K2
n

Pn
∼ c

log n

n

for some c > 0, we have

lim
n→∞

P [K(n; θn) is connected] =


0 if 0 < c < 1

1 if 1 < c

Same zero-one law for absence of isolated nodes

Observation: With limn→∞ q(θn) = 1,

K2
n

Pn
∼ 1 − q(θn)
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Observation

All cases discussed so far are “homogeneous” with a well-defined
link probability p(G):

p(G) = Probability that two nodes are adjacent in G

Zero-one laws for connectivity and absence of isolated nodes are
determined by conditions on p(G), or proxy thereof:

p(?(n, ?n) ∼ c
log n

n

for some c > 0
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ER graphs G(n; p): p

Random geometric graphs G(n; ρ): . . . but πρ2

Random key graphs K(n; θ): 1 − q(θ) but K2

P
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Intersecting random graphs
and their zero-one laws
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Three examples

Secure links via key sharing under partial visibility with an on-off
communication model:

G(n; p) ∩ K(n; θ)

Disk model with possibility of defective links due to fading:

G(n; ρ) ∩ G(n; p)

Disk model with possibility of secure links via key sharing:

G(n; ρ) ∩ K(n; θ)
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With n → ∞,

In all cases mentioned earlier, elements of a limiting theory are
available for the component random graphs: Zero-one laws hold
for graph connectivity and absence of isolated nodes when the
parameters are properly scaled with n

Inheritance – For a given random intersection graph,

• Zero-one laws for graph connectivity and for the absence of
isolated nodes?

• Critical thresholds?

• Width of phase transitions?
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A silly detour: Intersecting ER graphs

With G1 ≡ G(n, p1) and G2 ≡ G(n, p2), then

G1 ∩ G2 =st G(n, p) with p := p1 · p2

under the independence of the components.

Whenever
pn = p1,n · p2,n ∼ c

log n

n
for some c > 0, we have

lim
n→∞

P [G(n; pn) is connected] =


0 if 0 < c < 1

1 if 1 < c
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Zero-law holds for G(n, p1) ∩ G(n, p2) whenever

pn = p1,n · p2,n =
1
2

log n

n
, n = 1, 2, . . .

Yet one-law holds for G(n, p1) and G(n, p2) with

p1,n = p2,n =

√
1
2

log n

n
, n = 1, 2, . . .

since

lim
n→∞

√
1
2

log n
n

log n
n

= lim
n→∞

√
1
2
·
√

n

log n
= ∞
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Easy to understand what is going on here because

G(n; p1) ∩ G(n; p2) =st G(n, p) with p := p1 · p2

but this yields so little insight! Yet . . .

Intersecting ER graphs is trivial but what about other situations?

Natural question: Might it still be the case that zero-one laws
are determined by conditions on the link assignment probability

p(G1 ∩ G2) = p(G1) · p(G2) [Independence]

Remember in “one dimension”!
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Intersecting G(n; p) and K(n; θ)
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This time,

G(n; p) ∩ K(n; θ) ̸=st G(n; p′) for some p′ = p′(p, θ)

G(n; p) ∩ K(n; θ) ̸=st K(n; θ′) for some θ′ = θ′(p, θ)

But not all is lost!

p (G(n; p)) = p

and
p (K(n; θ)) = (1 − q(θ))

so that
p (G(n; p) ∩ K(n; θ)) = p · (1 − q(θ))
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Conjecture?

Strong zero-one law for connectivity and absence of isolated
nodes in G(n; p) ∩ K(n; θ): Whenever

pn (1 − q(θn)) ∼ c
log n

n

for some c > 0, we have

lim
n→∞

P [G(n; pn) ∩ K(n; θn) . . .] =


0 if 0 < c < 1

1 if 1 < c
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Indeed correct . . .

Connectivity:

Yağan (2012) provided limn→∞ pn log n exists and there exists
σ > 0 such that

σn ≤ Pn, n = 1, 2, . . .

Absence of isolated nodes:

Makowski and Yağan (2013) without any additional condition!
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Let In(p, θ) denote the number of isolated nodes in the
intersection graph G(n; p) ∩ K(n; θ), so that

P [G(n; p) ∩ K(n; θ) has no isolated node] = P [In(p, θ) = 0]

Method of first and second moments via the standard bounds

1 − E [In(p, θ)] ≤ P [In(p, θ) = 0]

and

P [In(p, θ) = 0] ≤ 1 − (E [In(p, θ)])2

E [In(p, θ)2]
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Need to figure out whether

lim
n→∞

E [In(pn, θn)] = 0

and

lim
n→∞

(E [In(pn, θn)])2

E [In(pn, θn)2]
= 1

under the appropriate conditions
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Easy to see that

E [In(p, θ)] = n (1 − p(1 − q(θ)))n−1

so that

lim
n→∞

E [In(pn, θn)] = lim
n→∞

n

(
1 − cn

log n

n

)n−1

=


∞ if 0 < c < 1 – Beware

0 if 1 < c

with limn→∞ cn = c

n

(
1 − cn

log n

n

)n−1

= elog n−(n−1)cn
log n

n +...
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Expression available for

(E [In(θ)])2

E [In(p, θ)2]

but far more complicated!

Zero-law for connectivity follows. One-law handled by arguments
similar to the ones used by Yağan and Makowski (2012)
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Additional results

G(n, ρ) ∩ G(n, p)

Yi et al (2006), Prasanth Anthapadmanabhan and Makowski
(2010), Penrose (2013)

G(n, ρ) ∩ K(n, θ)

Yi et al (2006), Santhana Krishnan et al. (2013)


